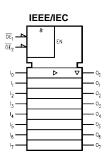
FAIRCHILD SEMICONDUCTOR

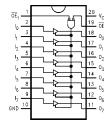
74VHCT541A **Octal Buffer/Line Driver with 3-STATE Outputs**

General Description

Features


- High Speed: t_{PD} = 5.5 ns (typ) at V_{CC} = 5V
- \blacksquare Low power dissipation: I_{CC} = 4 μA (max) at T_A = 25 $^{\circ}C$
- Power down protection is provided on all inputs and outputs
- Pin and function compatible with 74HCT541

Ordering Code:


74VHCT: Octal Bu	јстов [®] 541А	Driver with	Revised April 2005 3-STATE Outputs					
fabricated with sili the high-speed of Schottky TTL while pation. The VHCT541A is employed as mer and bus oriented t This device is sim providing flow-thro from outputs). This especially useful	escription an advanced high-s congate CMOS tecl operation similar to a maintaining the CM an octal buffer/line d nory and address d ransmitter/receivers. hilar in function to th ugh architecture (inp s pinout arrangemen as an output port for yout and greater PC	nology. It achieves equivalent Bipolar OS low power dissi- river designed to be rivers, clock drivers e VHCT244A while uts on opposite side t makes this device or microprocessors,	Protection circuits ensure that 0V to 7V can be applied to the input and output (Note 1) pins without regard to the supply voltage. This device can be used to interface 3V to 5V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mis- matched supply and input voltages. Note 1: Outputs in OFF-state. Features ■ High Speed: $t_{PD} = 5.5 \text{ ns}$ (typ) at $V_{CC} = 5V$ ■ Low power dissipation: $I_{CC} = 4 \mu A$ (max) at $T_A = 25^{\circ}C$ ■ Power down protection is provided on all inputs and outputs ■ Pin and function compatible with 74HCT541					
Ordering C	ode:							
Order Number	Package Number		Package Description					
74VHCT541AM	M20B	20-Lead Small Outline	-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide					
74VHCT541ASJ	M20D	Pb-Free 20-Lead Sm	all Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide					
	MTC20	20 Load Thin Shrink	0-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide					
74VHCT541AMTC	M1C20	20-Leau Thirt Shirink	Sinal Outline Fackage (10001), JEDEC MO-100, 4.4mm Mue					

Pb-Free package per JEDEC J-STD-020B.

Logic Symbol

Connection Diagram

Truth Table

		Outputs				
	OE ₁	OE ₂	I			
	L	L	Н	Н		
	Н	Х	Х	Z		
	Х	н	Х	Z		
	L	L	L	L		
H = HIGH \ K = Immate	/oltage Level rial		OW Voltage igh Impedar			

Pin Descriptions

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output Enable Inputs
I ₀ - I ₇	Inputs
O ₀ - O ₇	3-STATE Outputs

Absolute Maximum Ratings(Note 2)

Supply Voltage (V	(cc)	-0.5V to +7.0V
DC Input Voltage	(V _{IN})	-0.5V to +7.0V
DC Output Voltag	e (V _{OUT})	
(Note 3)		-0.5V to 7.0V
(Note 4)		-0.5V to V _{CC} + 0.5V
Input Diode Curre	ent (I _{IK})	–20 mA
Output Diode Cur	rent (I _{OK})	
(Note 5)		±20 mA
DC Output Currer	nt (I _{OUT})	±25 mA
DC V _{CC} /GND Cu	rrent (I _{CC})	±75 mA
Storage Tempera	ture (T _{STG})	−65°C to +150°C
Lead Temperature	e (T _L)	
(Soldering, 10	seconds)	260°C

Recommended Operating Conditions (Note 6)

Supply Voltage (V _{CC})	4.5V to +5.5V
Input Voltage (V _{IN})	0V to +5.5V
Output Voltage (V _{OUT})	
(Note 4)	0V to V _{CC}
(Note 3)	0V to 5.5V
Operating Temperature (T _{OPR})	-40°C to +85°C
Input Rise and Fall Time (t_r, t_f)	
$V_{CC} = 5.0V \pm 0.5V$	0 ~ 20 ns/V

Note 2: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.

Note 3: When Outputs are in OFF-State OR when $V_{\mbox{CC}}$ = 0V.

Note 4: HIGH or LOW state $\mathbf{I}_{\mathsf{OUT}}$ absolute maximum rating must be observed.

Note 5: $V_{OUT} <\!\! \text{GND}, V_{OUT} > V_{CC}$ (Outputs Active).

Note 6: Unused inputs must be held HIGH or LOW. They may not float.

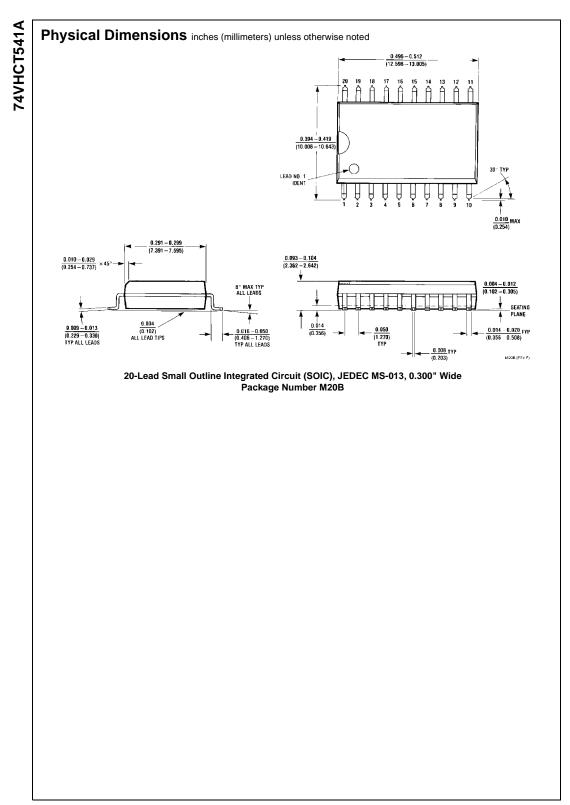
DC Electrical Characteristics

Symbol	Parameter	V _{CC}		$T_A = 25^\circ C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	
V _{IH}	HIGH Level Input Voltage	4.5 - 5.5	2.0			2.0		V		
VIL	LOW Level Input Voltage	4.5 - 5.5			0.8		0.8	V		
V _{OH}	HIGH Level Output Voltage	4.5	4.4	4.5		4.4		V	$V_{IN} = V_{IH}$	$I_{OH} = -50 \ \mu A$
		4.5	3.94			3.80		V		$I_{OH} = -8 \text{ mA}$
V _{OL}	LOW Level Output Voltage	4.5		0.0	0.1		0.1	V	$V_{IN} = V_{IL}$	$I_{OL}=+50~\mu A$
		4.5			0.36		0.44	V		$I_{OL} = +8 \text{ mA}$
I _{OZ}	3-STATE Output	5.5			±0.25		±2.5	μA	$V_{IN} = V_{IH} \text{ or } V_{IL}$	
	Off-State Current								$V_{OUT} = V_{CC}$ or GND	
I _{IN}	Input Leakage Current	0 - 5.5			±0.1		±1.0	μA	V _{IN} = 5.5V or GND	
I _{CC}	Quiescent Supply Current	5.5			4.0		40.0	μA	V _{IN} = V _{CC} or GND	
ICCT	Maximum I _{CC} /Input	5.5			1.35		1.50	mA	$V_{IN} = 3.4V$ Other Inputs = V_{CC} or GN	
I _{OFF}	Output Leakage Current	0			0.5		5.0	μA	V _{OUT} = 5.5	V

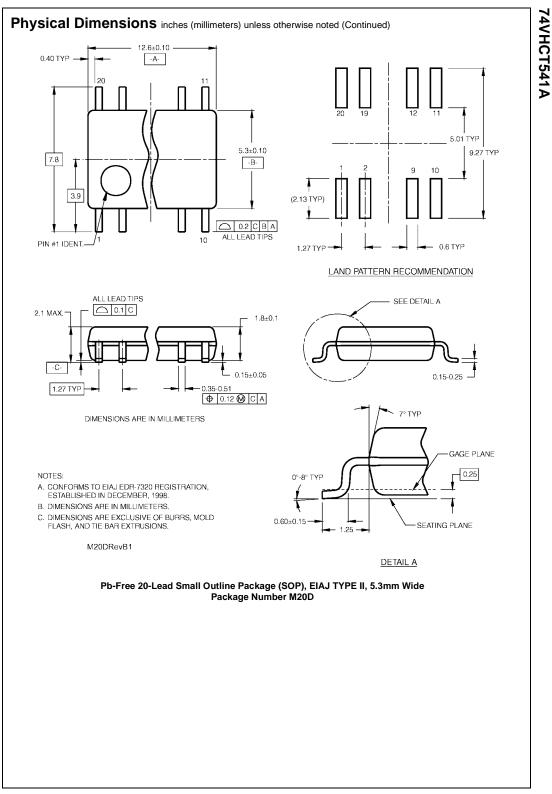
Noise Characteristics

Symbol	Parameter	V _{CC}	T _A =	25°C	Units	Conditions	
Symbol	Faranieter	(V)	Тур	Limits	Units	conditions	
V _{OLP} (Note 7)	Quiet Output Maximum Dynamic V _{OL}	5.0	1.2	1.6	V	$C_L = 50 \text{ pF}$	
V _{OLV} (Note 7)	Quiet Output Minimum Dynamic V _{OL}	5.0	-1.2	-1.6	V	$C_L = 50 \text{ pF}$	
V _{IHD} (Note 7)	Minimum HIGH Level Dynamic Input Voltage	5.0		2.0	V	$C_L = 50 \text{ pF}$	
V _{ILD} (Note 7)	Maximum HIGH Level Dynamic Input Voltage	5.0		0.8	V	$C_L = 50 \text{ pF}$	

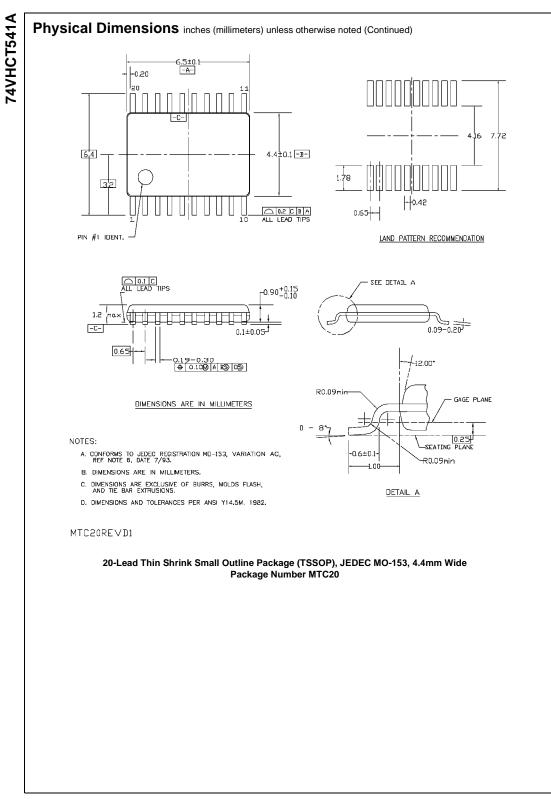
Note 7: Parameter guaranteed by design.

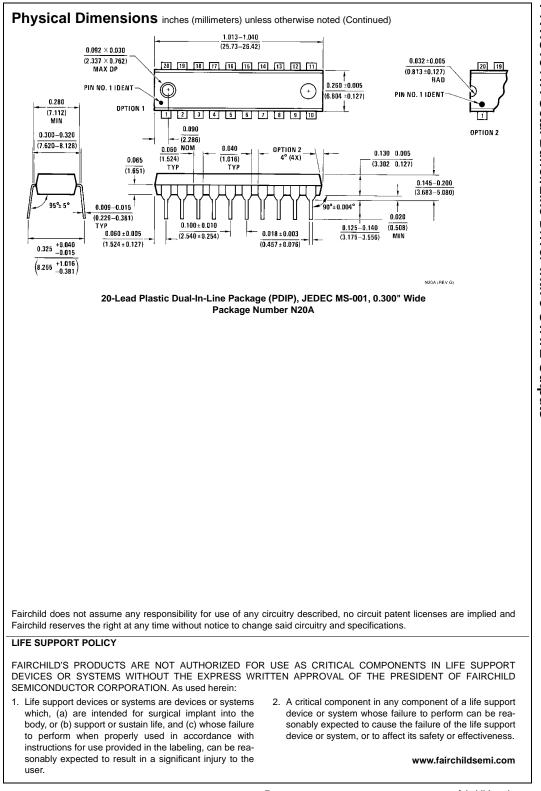

AC Electrical Characteristics

Symbol	Parameter	V _{cc}	T _A = 25 °C			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	
Symbol		(V)	Min	Тур	Max	Min	Max	Units	Cond	110115
t _{PLH}	Propagation Delay	5.0 ± 0.5		5.0	6.9	1.0	8.0	ns		$C_L = 15 \text{ pF}$
t _{PHL}	Time			5.5	7.9	1.0	9.0			$C_L = 50 \text{ pF}$
t _{PZL}	3-STATE Output	5.0 ± 0.5		8.3	11.3	1.0	13.0	ns	$R_L = 1 \ k\Omega$	$C_L = 15 \text{ pF}$
t _{PZH}	Enable Time			8.8	12.3	1.0	14.0			$C_L = 50 \text{ pF}$
t _{PLZ}	3-STATE Output	5.0 ± 0.5		9.4	11.9	1.0	13.5	ns	$R_L = 1 \ k\Omega$	$C_L = 50 \text{ pF}$
t _{PHZ}	Disable Time									
t _{OSLH}	Output to Output Skew	5.0 ± 0.5			1.0		1.0	ns	(Note 8)	$C_L = 50 \text{ pF}$
t _{OSHL}										
CIN	Input Capacitance			4	10		10	pF	V _{CC} = Open	
C _{OUT}	Output Capacitance			9				pF	$V_{CC} = 5.0V$	
C _{PD}	Power Dissipation Capacitance			19				pF	(Note 9)	


 $\textbf{Note 8:} Parameter guaranteed by design. t_{OSLH} = |t_{PLHmax} - t_{PLHmin}|; t_{OSHL} = |t_{PHLmax} - t_{PHLmin}|.$

Note 9: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (OPR.) = C_{PD} * V_{CC} * f_{IN} + $I_{CC}/8$ (per bit).


74VHCT541A


www.fairchildsemi.com

www.fairchildsemi.com

www.fairchildsemi.com

7

www.fairchildsemi.com